2008年8月26日星期二

什么是色相

色相,顾名思义即各类色彩的相貌称谓,如大红、普蓝、柠檬黄等。色相是色彩的首要特征,是区别各种不同色彩的最准确的标准。事实上任何黑白灰以外的颜色都有色相的属性,而色相也就是由原色、间色和复色来构成的。
  从光学意义上讲,色相差别是由光波波长的长短产生的。即便是同一类颜色,也能分为几种色相,如黄颜色可以分为中黄、土黄、柠檬黄等,灰颜色则可以分为红灰、蓝灰、紫灰等。

  光谱中有红、橙、黄、绿、蓝、紫六种基本色光,人的眼睛可以分辨出约180种不同色相的颜色。

2008年8月24日星期日

什么是色彩饱和度


液晶的色彩饱和度(Color Gamut),又名液晶开口率(Aperture Ratio)。 它代表液晶显示器色彩的鲜艳程度,是液晶产品非常重要的参数。

色彩饱和度是以显示器三原色色彩范围为分子,NTSC所规定的三原色色彩范围为分母,求百分比。如果某台显示器色彩饱和度为“72%NTSC”,那表明这台显示器可以显示的颜色范围为NTSC规定的百分之七十二。

  由于液晶每个象素由红、绿、蓝(RGB)子象素组成,背光通过液晶分子后依靠RGB象素组合成任意颜色光。如果RGB三原色越鲜艳,那么显示器可以表示的颜色范围就越广。如果显示器三原色不鲜艳,那这台显示器所能显示的颜色范围就比较窄,因为其无法显示比三原色更鲜艳的颜色。提高色彩饱和度的方法是提高背光亮度和液晶的透光度,这需要厂商更高的技术和成本,市面上各款液晶显示器档次不同,其鲜艳程度亦大不相同,目前最高标准为72%NTSC。


2008年8月21日星期四

2008年8月14日星期四

TCO03和TCO99的区别

在电器产品领域,相关的电气安规认证标准有很多,如UL、CE、FCC、TCO等等。而其中最为严格的认证即为由“瑞典专业雇员联盟”制定的TCO系列认证标准。该系列标准主要着重在电器产品的低频辐射安全规范方面,其标准由最早的TCO92开始,逐渐发展到TCO95,再到现在普遍使用的TCO99以及从今年才开始正式推出的TCO03标准。可以说在目前已经普及安规标准中,TCO99认证是最为严格的。

针对电脑显示器,TCO99认证在环保、生物工程、人体工程学、电磁场辐射、节能、电气安全性以及资源回收和有害物控制等诸多方面作了严格的规定。并且在产品可用性方面TCO99也有严格的要求。包括显示器的几何失真、亮度及其均匀度、刷新频率、抗干扰能力、绝缘性、可调节范围、使用者舒适度等。

TCO99标准不仅在国际上受到高度的重视,并且在国内也得到了普遍的认同。特别是在健康环保观念日益深入人心的今天,通过TCO99认证已经成为很多消费者选购显示器产品时考虑因素之一。在国内市场上,贴有TCO99认证标志的显示器产品已经成为主流。特别是在液晶显示器大行其道的今天,已经很难在市场上找到一款没有标榜自己获得了TCO99认证的液晶显示器产品。

为了防止冒充TCO认证的情况发生,TCO组织在其官方网站(www.tcodevelopment.com)上提供了一个公开的查询数据库:http://tco.networks.nu/index_publicsearch.htm。在该数据库中可以查到某型号的产品是否真正通过了TCO认证。
--显示器TCO03认证简介

TCO’03--给CRT显示器更多人情味

对于绝大多数消费者来说,TCO标准对于显示器来说主要是一个以电磁辐射为主要衡量指标的健康标准。简言之,有TCO认证的产品,用起来一定比没有认证的放心,通过TCO’03认证的产品,用起来则比停留在TCO’99的产品更放心。尽管这个判断似乎有些太“初级”,不过却有一定道理,尤其对于CRT显示器来说,新标准给消费者带来的关怀和保护可谓不言而喻。

人性化:TCO’03指明CRT显示器发展方向

大家关注TCO认证标志,很大程序上是出于对健康的考虑,例如电磁辐射和电器安全等指标。也就是说,TCO标志好比厂家给消费者的一颗“定心丸”,代表着一种对消费者健康的承诺。从这个意义上说,TCO认证成为消费者选购CRT显示器最重要的参考依据之一。尤其是TCO’03的出台,更是把TCO认证体系推进到新的高度。

首先,新标准首次提出了工作负载人体工程学标准,这表明TCO标准更加贴近用户、关注用户的实际使用感受。之所以称之为“工作负载人体工程学”,是因为很多电脑用户都是长期伏案操作,形成强迫姿势。我们知道,电脑病已经在高强度使用电脑的人群中蔓延。TCO’03要求CRT显示器至少有20度的垂直倾斜调节范围,这样用户可以根据需要变换工作姿势,减轻工作负载,从而也减少了因长期操作电脑导致各种疾病发生的可能性。

其次,提升视觉人体工程学标准,以改善用户操作时的视觉感受。这一标准主要提高了亮度特性、亮度反差和前框反射率、屏幕颜色等指标。

第三,对生态保护更加严厉。TCO’03还引入了对最小化使用铅的要求,而且除必须通过最基础的TCO’99关于可回收的指标外,生产的工厂还要通过ISO14001认证,并签订资源回收合约并公布何处回收显示器产品的信息,这对那些一贯不重视环境保护的工厂来说无疑是一个严厉警告。与LCD显示器不同,CRT产品通常具备“体型”庞大、回收困难的特点,这也是一些厂商对新标准避之不及的原因。但通用汽车公司董事长约翰•史密斯在上海APEC年会的一句话也许值得人们玩味:“只有担负起对社会的责任才能使一个企业卓而不群”。

2008年8月13日星期三

什么是色温

自然界的光线不总是相同的。可感知到的一个物体颜色依赖于照射到他的光源。人类的大脑可以很好地“校正”这些颜色变化,但是我们所使用的胶片或CCD/CMOS感光器却不能完成这样的任务。
  如果一个物体燃烧起来,首先火焰是红色的,随着温度升高然后它变成了橙黄色,然后变成白色,最后呢,蓝色出现了。苏格兰数学家和物理学家lord kelvin在1848年最早发现了热与颜色的紧密结合关系,并且留给世界了一个伟大的“绝对零度”(-273.16摄氏度)概念。从此创立了开氏温标(Kelvin temperature scale)。这就是我们今天谈论色温的理论基础。下图为开氏温标示意图:


  开氏温标用K(kelvin的缩写)单位来表示温度,越低的数值表示越“红”,越高的数值表示越“蓝”。红和蓝并不是光线本身颜色,只是表明光谱中的红或蓝成分较多。下面看看开氏温标中的常见标准:

  “绝对零度”在开试温标中表示为0K,对应的是-273.16摄氏度或-459华氏度,在这个温度下物质的热活性完全停止。

  蜡烛的色温一般在1800K

  白炽灯在3000K

  晴天为5200K

  阳光直射下5000K

  阴天下6500-9000K

  深蓝的天空本身可以到20000K!

2008年8月12日星期二

液晶显示器之液晶板类型



常见的液晶显示器按物理结构分为四种:

(1)扭曲向列型(TN-Twisted Nematic);

(2)超扭曲向列型(STN-Super TN);

(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);

(4)薄膜晶体管型(TFT-Thin Film Transistor)。

1.TN型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来进行改良。而且,它的运作原理也较其它技术来的简单。请参照下方的图片。图中所表示的是TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。




2.STN型的显示原理与TN相类似。不同的是,TN扭转式向列场效应的液晶分子是将入射光旋转90度,而STN超扭转式向列场效应是将入射光旋转180~270度。

3.DSTN是通过双扫描方式来扫描扭曲向列型液晶显示屏,从而达到完成显示目的。DSTN是由超扭曲向列型显示器(STN)发展而来的。由于DSTN采用双扫描技术,因此显示效果相对STN来说,有大幅度提高。

4.TFT型的液晶显示器较为复杂,主要是由:萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等构成。首先,液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶。这时液晶分子的排列方式就会改变穿透液晶的光线角度,然后这些光线还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变加在液晶上的电压值就可以控制最后出现的光线强度与色彩,这样就能在液晶面板上变化出有不同色调的颜色组合了。是目前主流液晶显示器的面板。


什么是dvi接口

DVI是数字接口。只有显示器和显卡都有DVI接口才能用,效果没看出来又什么不同。不过DVI接口是趋势。

DVI全称为Digital Visual Interface

DVI系统的工作原理:一个完整的DVI显示系统包括一个传送器和一个接收器。传送器是信号的来源,可以内建在显卡芯片中,也可以以附加芯片的形式出现在显卡PCB板上(目前大部分显卡产品都能直接支持DVI输出);而接收器则是显示器上的一块电路,它可以接受数字信号,将其解码并传递到数字显示电路中,通过这两者,显卡发出的信号成为显示器上的图象。

DVI优点:与传统的VGA接口相比,DVI主要有两大优点,其中第一点是速度快。由于DVI传输的是数字信号,而数字图像信息不需经过任何转换,就会直接被传送到显示设备上,所以DVI将比模拟接口减少了数字→模拟→数字繁琐的转换过程。简单来说,采用DVI接口的液晶能更有效消除拖影现象,并且色彩更纯净,更逼真。至于DVI第二点优点就是画面清晰,色彩锐利。采用DVI接口的液晶无需进行多余的数模转换,所以在显示的过程中避免了信号的损失。简单来说,采用DVI接口的液晶所显示在图像清晰度、细节表现力方面都非常突出。

DVI接口的种类:目前的DVI接口分为两种,一种是DVI-D接口,只能接收数字信号,接口上只有3排8列共24个针脚,其中右上角的一个针脚为空。不兼容模拟信号。另一种是DVI-I接口,可同时兼容模拟和数字信号,目前显卡多数采用DVI-I接口,而DVI-D接口仅出现在专业应用领域上。

2008年8月11日星期一

什么是DirectX

DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的API,它包含有Direct Graphics(Direct 3D+Direct Draw)、Direct Input、Direct Play、Direct Sound、Direct Show、Direct Setup、Direct Media Objects等多个组件,它提供了一整套的多媒体接口方案。只是其在3D图形方面的优秀表现,让它的其它方面显得暗淡无光。DirectX开发之初是为了弥补Windows 3.1系统对图形、声音处理能力的不足,而今已发展成为对整个多媒体系统的各个方面都有决定性影响的接口。
DirectX 5.0
微软公司并没有推出DirectX 4.0,而是直接推出了DirectX 5.0。此版本对Direct3D做出了很大的改动,加入了雾化效果、Alpha混合等3D特效,使3D游戏中的空间感和真实感得以增强,还加入了S3的纹理压缩技术。同时,DirectX 5.0在其它各组件方面也有加强,在声卡、游戏控制器方面均做了改进,支持了更多的设备。因此,DirectX发展到DirectX 5.0才真正走向了成熟。此时的DirectX性能完全不逊色于其它3D API,而且大有后来居上之势。

DirectX 6.0
DirectX 6.0推出时,其最大的竞争对手之一Glide,已逐步走向了没落,而DirectX则得到了大多数厂商的认可。DirectX 6.0中加入了双线性过滤、三线性过滤等优化3D图像质量的技术,游戏中的3D技术逐渐走入成熟阶段。

DirectX 7.0
DirectX 7.0最大的特色就是支持T-L,中文名称是“坐标转换和光源”。3D游戏中的任何一个物体都有一个坐标,当此物体运动时,它的坐标发生变化,这指的就是坐标转换;3D游戏中除了场景+物体还需要灯光,没有灯光就没有3D物体的表现,无论是实时3D游戏还是3D影像渲染,加上灯光的3D渲染是最消耗资源的。虽然OpenGL中已有相关技术,但此前从未在民用级硬件中出现。在T-L问世之前,位置转换和灯光都需要CPU来计算,CPU速度越快,游戏表现越流畅。使用了T-L功能后,这两种效果的计算用显示卡的GPU来计算,这样就可以把CPU从繁忙的劳动中解脱出来。换句话说,拥有T-L显示卡,使用DirectX 7.0,即使没有高速的CPU,同样能流畅的跑3D游戏。

DirectX 8.0
DirectX 8.0的推出引发了一场显卡革命,它首次引入了“像素渲染”概念,同时具备像素渲染引擎(Pixel Shader)与顶点渲染引擎(Vertex Shader),反映在特效上就是动态光影效果。同硬件T-L仅仅实现的固定光影转换相比,VS和PS单元的灵活性更大,它使GPU真正成为了可编程的处理器。这意味着程序员可通过它们实现3D场景构建的难度大大降低。通过VS和PS的渲染,可以很容易的宁造出真实的水面动态波纹光影效果。此时DirectX的权威地位终于建成。

DirectX 9.0
2002年底,微软发布DirectX9.0。DirectX 9中PS单元的渲染精度已达到浮点精度,传统的硬件T-L单元也被取消。全新的VertexShader(顶点着色引擎)编程将比以前复杂得多,新的VertexShader标准增加了流程控制,更多的常量,每个程序的着色指令增加到了1024条。

PS 2.0具备完全可编程的架构,能对纹理效果即时演算、动态纹理贴图,还不占用显存,理论上对材质贴图的分辨率的精度提高无限多;另外PS1.4只能支持28个硬件指令,同时操作6个材质,而PS2.0却可以支持160个硬件指令,同时操作16个材质数量,新的高精度浮点数据规格可以使用多重纹理贴图,可操作的指令数可以任意长,电影级别的显示效果轻而易举的实现。

VS 2.0通过增加Vertex程序的灵活性,显著的提高了老版本(DirectX8)的VS性能,新的控制指令,可以用通用的程序代替以前专用的单独着色程序,效率提高许多倍;增加循环操作指令,减少工作时间,提高处理效率;扩展着色指令个数,从128个提升到256个。

增加对浮点数据的处理功能,以前只能对整数进行处理,这样提高渲染精度,使最终处理的色彩格式达到电影级别。突破了以前限制PC图形图象质量在数学上的精度障碍,它的每条渲染流水线都升级为128位浮点颜色,让游戏程序设计师们更容易更轻松的创造出更漂亮的效果,让程序员编程更容易。

DirectX 9.0c
与过去的DirectX 9.0b和Shader Model 2.0相比较,DirectX 9.0c最大的改进,便是引入了对Shader Model 3.0(包括Pixel Shader 3.0 和Vertex Shader 3.0两个着色语言规范)的全面支持。举例来说,DirectX 9.0b的Shader Model 2.0所支持的Vertex Shader最大指令数仅为256个,Pixel Shader最大指令数更是只有96个。而在最新的Shader Model 3.0中,Vertex Shader和Pixel Shader的最大指令数都大幅上升至65535个,全新的动态程序流控制、 位移贴图、多渲染目标(MRT)、次表面散射 Subsurface scattering、柔和阴影 Soft shadows、环境和地面阴影 Environmental and ground shadows、全局照明 (Global illumination)等新技术特性,使得GeForce 6、GeForce7系列以及Radeon X1000系列立刻为新一代游戏以及具备无比真实感、幻想般的复杂的数字世界和逼真的角色在影视品质的环境中活动提供强大动力。

因此DirectX 9.0c和Shader Model 3.0标准的推出,可以说是DirectX发展历程中的重要转折点。在DirectX 9.0c中,Shader Model 3.0除了取消指令数限制和加入位移贴图等新特性之外,更多的特性都是在解决游戏的执行效率和品质上下功夫,Shader Model 3.0诞生之后,人们对待游戏的态度也开始从过去单纯地追求速度,转变到游戏画质和运行速度两者兼顾。因此Shader Model 3.0对游戏产业的影响可谓深远。

 

©2009 上海显示器产业协会